

The importance of interoperability in European green corridors

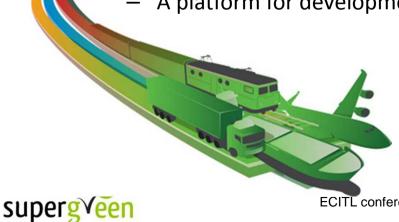
Harilaos N. Psaraftis
George Panagakos
Dimitrios V. Lyridis
Laboratory for Maritime Transport
National Technical University of Athens

Overview

- What is a green corridor
- Key Performance Indicators (KPIs)
- Interoperability and KPIs
- Corridor benchmarking
- Conclusions

What is a green corridor?

EU Commission:



 Green Corridors are a European concept denoting long-distance freight transport corridors where advanced technology and comodality are used to achieve energy efficiency and reduce environmental impact.

What is a green corridor?

- Definition by the Swedish Ministry:
 A green transport corridor is characterised by:
 - Sustainable logistic solutions
 - Integrated logistic concepts with utilisation of comodality
 - A harmonised system of rules
 - National/international goods traffic on long transport stretches
 - Effective and strategically placed transshipment points and infrastructure
 - A platform for development and demonstration of innovative logistic solutions

The SuperGreen project

- Theme title: Transport (including Aeronautics)
- Type of project: Coordination and Support Action
- Project full title: Supporting EU's Freight Transport Logistics Action Plan on Green Corridors Issues
- Project acronym: SuperGreen

Objectives

- **Support and recommendations** on Green Corridors to EU's Freight Transport Logistics Action Plan.
- Encourage co-modality for sustainable solutions.
- Overall benchmarking of Green Corridors based on selected KPIs covering all aspects related to transport operations and infrastructure (emissions, internal and external costs).
- Conduct a programme of networking activities between stakeholders to facilitate information exchange, dissemination of research results and communication of best practises and technologies.

Objectives, contd.

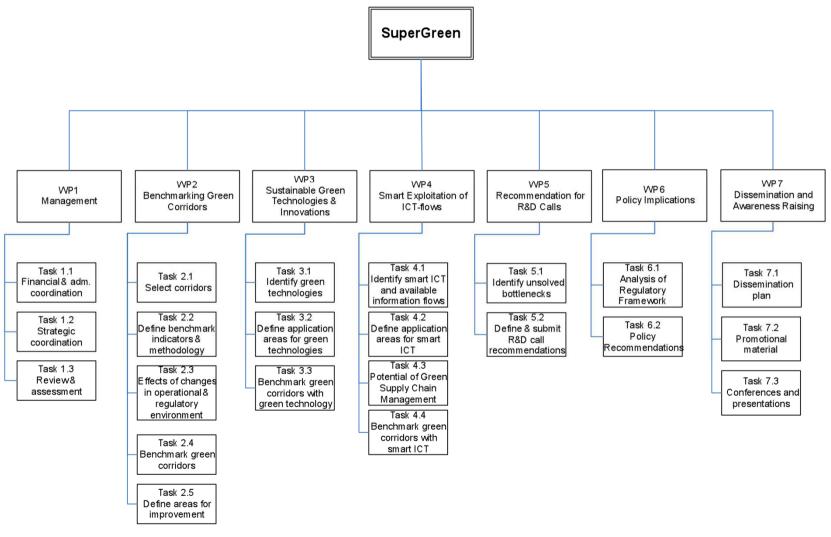
- **Deliver studies** addressing topics important for the further development of Green Corridors.
- Deliver policy recommendations at a European level for the further development of Green Corridors.
- Provide recommendations concerning new calls for R&D proposals to support development of Green Corridors (eliminate bottlenecks).

The consortium

Partner Number *	Partner name	Partner short	Country	
1 (Coordinator)	National Technical University of Athens	NTUA	Greece	
2	Norsk Marinteknisk Forskningsinstitutt AS, MARINTEK	MAR	Norway	
3	Sito Ltd (Finnish Consulting Engineers Ltd)	SITO	Finland	
4	D'Appolonia S.p.A.	DAPP	Italy	
5	Autoridad Portuaria de Gijon Gijón Port Authority-	PAG	Spain	
6	DNV Det norske Veritas	DNV	Norway	
7	via donau Österreichische Wasserstraßen- Gesellschaft mbH	VIA	Austria	
8	NewRail - Newcastle University	UNEW	UK	
9	CONSULTRANS	CONS	Spain	
10	PSA Sines	PSAS	Portugal	
11	Finnish Transport Agency	FMA	Finland	
12	Straightway Finland Ry	SWAY	Finland	
13	SNCF Fret Italia	SFI	Italy	
14	Procter & Gamble Eurocor	PG	Belgium	
15	VR Group	VRG	Finland	
16	Lloyd's Register-Fairplay Research	LRFR	Sweden	
17	Hellenic Shortsea Shipowners Association	HSSA	Greece	
18	Dortmund University of Technology	DUT	Germany	
19	TES Consult Ltd	TES	Ukraine	
20	Turkish State Railways	TCDD	Turkey	
21	DB Schenker AG	SCH	Germany	
22	Norwegian Public Road Administration	NPRA	Norway	

Duration & budget

• Official start: 15 Jan. 2010


Duration: 3 years

Total budget: 3,453,747 EUR

EC contribution: 2,634,698 EUR

SuperGreen work package structure

KPI areas: 5 groups

- Efficiency
- Service quality
- Environmental sustainability
- Infrastructural sufficiency
- Social issues

KPIs hierarchy

Efficiency	Absolute unit cost		
	Relative Unit cost		
Service quality	Transport time		
	Reliability		
	Frequency of service		
	ICT applications		
	Cargo security		
	Cargo safety		
Environmental sustainability	CO ₂ -eq		
	SOx		
	NOx		
	PM		
Infrastructure sufficiency	Congestion		
	Bottlenecks		
Social issues	Land use - urban areas		
	Land use - sensitive areas		
	Traffic safety		
	Noise		

KPI importance

KPI	Input unit	Output unit	Grading of importance for Supergreen	
Efficiency				
Absolute costs	ton, €	€/ton	3 Can manage without	
Relative costs	ton, €, km	€/ton-km	1 Must have	
Service quality				
Transport time	hours	hours	1 Must have	
Reliability	Total number of shipments, On- time deliveries	%	1 Must have	
ICT appl.	Availability, integration & functionality of cargo tracking & other services	graded scale	2 Prefer to have	
Frequency	Services per week	number	1 Must have	
Cargo security	Total number of shipments, Security incidents	%	2 Prefer to have	
Cargo safety	Total number of shipments, Cargo safety incidents	%	2 Prefer to have	
Environmental sustainability				
CO ₂ emissions	ton, km	g/ton-km	1 Must have	
NO _x emissions	kg, km	g/1,000 ton-km	2 Prefer to have	
SO _x emissions	kg, km	g/1,000 ton-km	1 Must have	
PM emissions	kg, km	g/1,000 ton-km	2 Prefer to have	
Infrastructural sufficiency				
Congestion	ton, km, Average delay	hours/ton-km	2 Prefer to have	
Bottlenecks	number & category	graded scale	2 Prefer to have	
Social				
Corridor land use	Share of distance per area type	percent	2 Prefer to have	
Traffic safety	Traffic safety incidents	percent	2 Prefer to have	
Noise	Share of distance above level	percent	2 Prefer to have	

Enter Interoperability

Key element of EU transport policy

- In the strict sense: Focuses on rail transport
- In the broad sense: Applies to all modes and to the supply chain as a whole

Rail patchwork

- At least 4 major gauge systems
- At least 4 major electricification systems
- At least 20 train control systems
- Various clearance systems
- Incompatibilities even between systems that are similar in other respects

Interoperability directive

- Directive 2008/57/EC of 17 June 2008 aims to establish the conditions so as to achieve interoperability within the Community rail system.
- Conditions concern the design, construction, placing in service, upgrading, renewal, operation and maintenance of the parts of this system as well as the professional qualifications and health and safety conditions of the staff.
- The new Directive has superseded as of 19 July 2010 the previous
 Directive 96/48/EC on the interoperability of the European high-speed rail
 system as well as Directive 2001/16/EC on the interoperability of the
 European conventional rail system.
- Two areas:
 - Interoperability of the conventional rail system
 - Interoperability of the high speed rail system.

Technical Specifications for Interoperability (TSIs)

- control/command and signalling
- telematics applications for freight services traffic operation and management (including staff qualifications for cross-border services)
- freight wagons; and
- noise problems deriving from rolling stock and infrastructure.

ERTMS

- European Rail Traffic Management System
- Many different train control systems
- Example: the Thalys train sets running between Paris-Brussels-Cologne and Amsterdam have to be equipped with 7 different types of train control systems

ERTMS components

- ETCS, the European Train Control System, is an automatic train protection system (ATP) to replace the existing national ATP-systems
- GSM-R, a radio system for providing voice and data communication between the track and the train, based on standard GSM using frequencies specifically reserved for rail application with certain specific and advanced functions.

Relevance to green corridors

- Rail interoperability: of paramount importance
- Most of the selected KPIs are significantly influenced by whether or not a rail corridor can function smoothly or not.
- It is speculated that even moderate gains in this department could translate in significant gains for the attractiveness of rail vis-à-vis other, less environmentally friendly modes of transport.

Impact of interoperability on KPIs

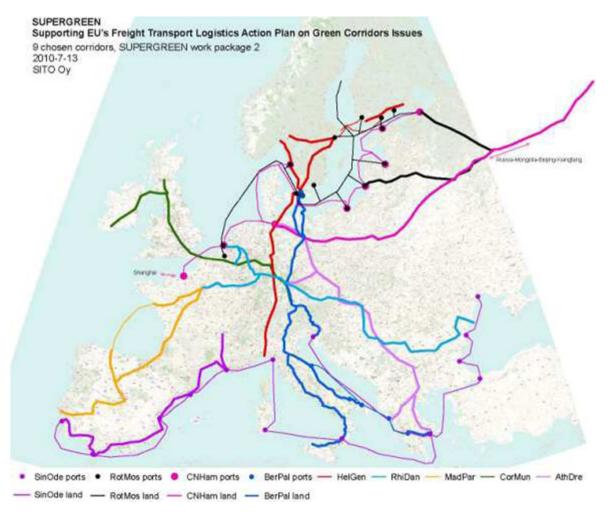
- Object of detailed analysis
- However, one can make some predictions

- Relative cost KPI: HIGH
- Transport time KPI:
 HIGH
- Reliability KPI: HIGH/moderate
- Frequency KPI: HIGH/moderate
- CO2 and SOx KPIs: HIGH/moderate

Interoperability in other modes

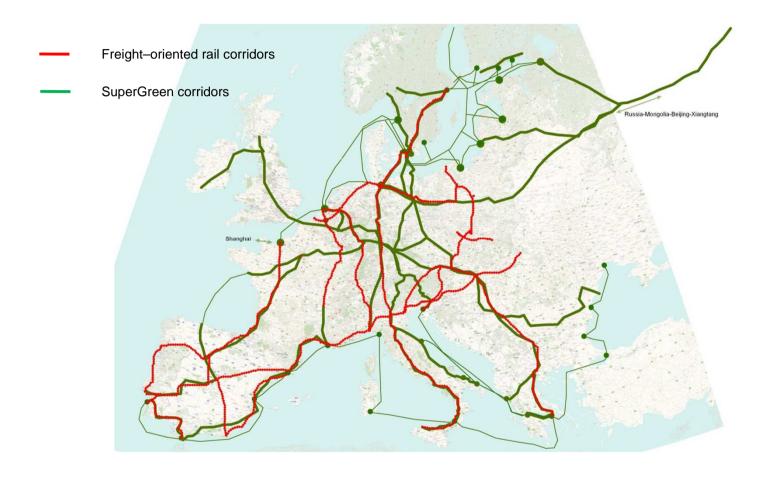
- Of equal importance, given drive for comodality
- Interoperability in conventional technology
- Interoperability in ICT

 A corridor with little or no interoperability cannot be green

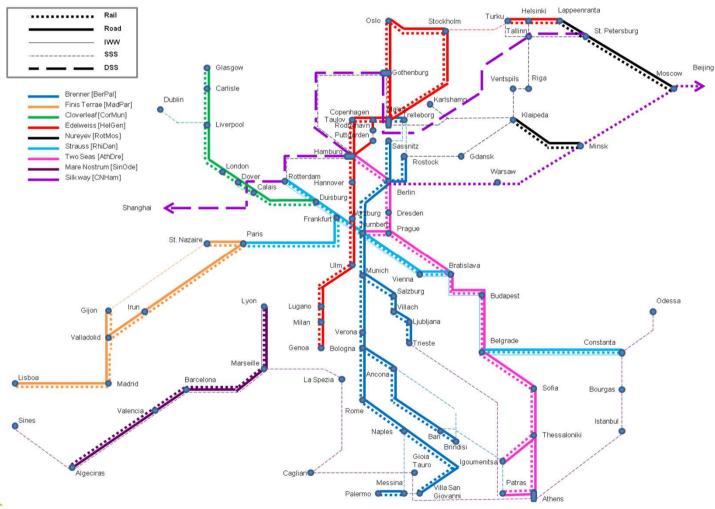


SuperGreen Corridors

BRIEF DESCRIPTION- BRANCHES	NICKNAME	
Malmö-Trelleborg-Rostock/Sassnitz- Berlin-Munich-Salzburg-Verona-Bologna-Naples-Messina-Palermo		
Branch A: Salzburg-Villach-Trieste (Tauern axis)	Brenner	
Branch B: Bologna-Ancona/Bari/Brindisi-Igoumenitsa/Patras-Athens		
Madrid-Gijon-Saint Nazaire-Paris	Finis Terrae	
Branch A: Madrid-Lisboa	rillis Terrae	
Cork-Dublin-Belfast-Stranraer	Cloverleaf	
Branch A: Munich-Friedewald-Nuneaton Branch B: West Coast Main line	Cloveriear	
Helsinki-Turku-Stockholm-Oslo-Göteborg-Malmö-Copenhagen	Edelweiss	
(Nordic triangle including the Oresund fixed link)- Fehmarnbelt - Milan - Genoa	caeiweiss	
Motorway of Baltic sea	Mark the second	
Branch: St. Petersburg-Moscow-Minsk-Klapeida .	Nureyeev	
Rhine/Meuse-Main-Danube inland waterway axis		
Branch A: Betuwe line	Strauss	
Branch B: Frankfurt-Paris		
Igoumenitsa/Patras-Athens-Sofia-Budapest-Vienna-		
Prague-Nurnberg/Dresden-Hamburg	Two Seas	
Odessa-Constanta-Bourgas-Istanbul-Piraeus-Gioia Tauro-Cagliari-La Spezia-Marseille-Barcelona-		
Valencia-Sines	and the second second	
Branch A: Algeciras-Valencia-Barcelona-Marseille-Lyon	Mare Nostrum	
Branch B: Piraeus-Trieste		
Shanghai-Le Havre/Rotterdam-Hamburg/Göteborg-Gdansk-Baltic ports-Russia		
Branch:Xiangtang-Beijing-Mongolia-Russia-Belarus-Poland-Hamburg	Silk Way	

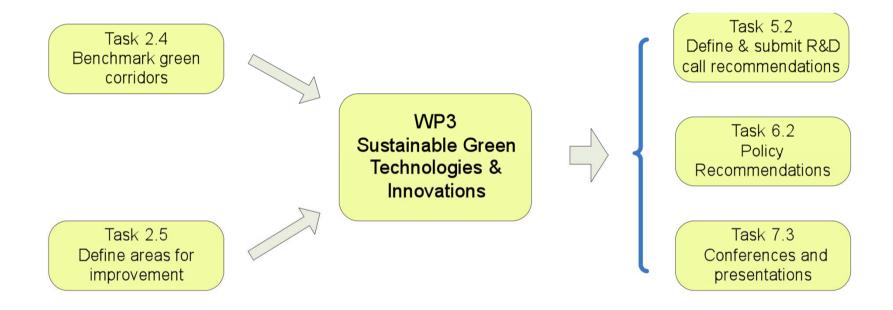


SuperGreen Corridors ii



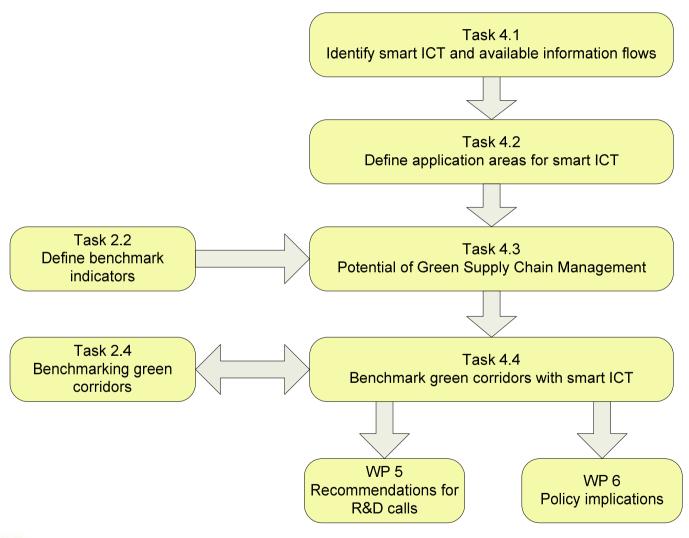
Resemblance with freight-oriented rail corridor network

The corridors in metro format



Benchmarking results (prelim.)

Corridor name	Mode of transport	CO2	SOx	Cost	Average speed	Reliability	Frequency
		(g/tkm)	(g/tkm)	(€/tkm)	(km/h)	%	x times/year
Brenner	Intermodal	10.62-42.11	0.020-0.140	0.03-0.09	9-41	95-99	26-624
	Road	46.51-71.86	0.050-0.080	0.05-0.06	19-40	25-99	52-2600
	Rail	9.49-17.61	0.040-0.090	0.05-0.80	44-98	60-95	208-572
	SSS	16.99	0.050-0.120	0.04-0.05	23	100	52-520
Cloverleaf	Road	68.81	0.091	0.06	40-60	80-90	4680
	Rail	13.14-18.46	0.014-0.021	0.05-0.09	45-65	90-98	156-364
Nureyev	Intermodal	13.43-33.36	0.030-0.150	0.10-0.18	13-42	80-90	156-360
	SSS	5.65-15.60	0.070-0.140	0.05-0.06	15-28	90-99	52-360
Strauss	IWT	9.86-22.80	0.013-0.031	0.02-0.44	-	-	-
Mare Nostrum	SSS	6.44-27.26	0.092-0.400	0.003-0.200	17	90-95	52-416
	DSS	15.22	0.22	-	-	-	-
Silk Way	Rail	41.00	-	0.05	26	-	-
	DSS	12.50	-	0.004	20-23	-	-



WP3: Sustainable green technologies and innovations

WP4: Smart exploitation of ICT flows

Smart ways to get connected

Give us a call or send an email!

- Send an email to <u>supergreen@martrans.org</u>
 (SuperGreen friends email list: keeping track of the project)
- Visit our web site <u>www.supergreenproject.eu</u>

PUBLIC DOCUMENTS

```
    Deliverable D2.1 - Selection of Corridors
    Deliverable D2.2 - Definition of Benchmark Indicators and Methodology
    Deliverable D2.3 - Effects of changes in operational and regulatory environment
    Deliverable D2.4 - Version 1 - Benchmarking of Green Corridors
    Deliverable D2.4 - Version 2 -Benchmarking of Green Corridors
    Deliverable D2.5 - Definition of Areas for Improvement
    Deliverable D3.1 - Identify Green Technologies (Year 1)
    Deliverable D4.1 - Identify smart ICT and information flows (Year 1)
    Deliverable D4.2 - Define application areas for smart ICT
```

http://www.supergreenproject.eu/info.html

Linkedin and Facebook

- GREEN CORRIDORS GROUP @ Linkedin
- Friends of SuperGreen page @ Facebook

WWW.SUPERGREENPROJECT.EU

